Vous êtes ici

Ressources

Challenging Systematic Prejudices: An Investigation into Bias Against Women and Girls in Large Language Models
Lieu de publication | Année de publication | Référence: 
Paris, Ljublijana | 2024 | 20 p.
Auteur: 
Daniel van Niekerk et al.
Publié sous la direction de: 
UNESCO; International Research Centre on Artificial Intelligence (IRCAI)
Région: 
Monde

This study explores biases in three significant large language models (LLMs): OpenAI’s GPT-2 and ChatGPT, along with Meta’s Llama 2, highlighting their role in both advanced decision-making systems and as user-facing conversational agents. Across multiple studies, the brief reveals how biases emerge in the text generated by LLMs, through gendered word associations, positive or negative regard for gendered subjects, or diversity in text generated by gender and culture. The research uncovers persistent social biases within these state-of-the-art language models, despite ongoing efforts to mitigate such issues. The findings underscore the critical need for continuous research and policy intervention to address the biases that exacerbate as these technologies are integrated across diverse societal and cultural landscapes. The emphasis on GPT-2 and Llama 2 being open-source foundational models is particularly noteworthy, as their widespread adoption underlines the urgent need for scalable, objective methods to assess and correct biases, ensuring fairness in AI systems globally.

Fichiers: 
Type de ressource: 
Rapports de conférences et de programmes
Thème: 
Droits de l'homme
Éducation aux médias et à l'information / citoyenneté numérique
Niveau d'éducation: 
Éducation et protection de la petite enfance (EPPE)
Enseignement primaire
Enseignement secondaire
Enseignement supérieur
Apprentissage tout au long de la vie
Enseignement et formation techniques et professionnels (EFTP)
Éducation non formelle
Mots-clés: 
Artificial intelligence
AI
Gender stereotypes
Prejudice
Languages